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Abstract

The density of states in delta-profiled 2D and 1D quantum systems is

calculated. It is shown that there are smooth crossovers in the density of

states from a 3D square-root behavior to a 2D steplike behavior, and from a 2D

to a 1D sawtooth-like behavior, as the confinements increase.
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I. Introduction

Quantum-well structures are being extensively studied for applications

in ultra-large-scale integrated circuits and high-speed optoelectronics. As

for these systems, the lateral confinement of originally quasi-two-dimensional

(Q2D) electron layers to submicron dimensions has made possible the

realization of quasi-one-dimensional (QID) electron systemsfl]. Among them,

resonant-tunneling structures are of great interest not only because of their

potential applications, but also for the underlying basic physics. A number

of theoretical studies have been carried out recently[2-5]. For example, one

of the authors has calculated the density of states and dwell times(3,4], and

Bahder et al have calculated the local density of states for a simplified

model with quite rigorous results(5].

Despite extensive investigations of quantum-well structures to date, we

are not aware of any study of the cross sectional local density of states of a

quantum-well wire structure. To solve this problem, we consider an artificial

structure, the so-called two-direction double-barrier resonant-tunneling

structure. In Section II we evaluate the eigenfunctions and eigenvalues from

an effective-mass Schrodinger equation. For the delta-profiled potential

model using these results in Section III, the local density of states has been

determined. In Section IV, integrating over the well volume, we calculate the

density of states in the well, where we show crossovers of the density of

states from 3D to 1D via 2D.

II. Theoretical model .,

We consider a typical two-direction double-barrier resonant-tunneling

structure (DBRTS) consisting of two thin (- 50 A) Al xGa 1 xAs layers, separated

by a thin GaAs layer in both directions. The potential is expressed by

-' :l 'j# o



3

V(y,x) - V y(y) + Vz(z)

- V(6(y+b) + 6(y-b)) + V0(S(z+a) + 6(z-a)) (1)

In this expression, the four Al XGalx As potential barriers have been replaced

by 6-functions with strengths V1 and V0 in the y- and z-direction,

respectively. The parameter V. (i - 0 or 1) is given by

V. - d.AV , (2)2. 1 CI.

where d. are the barrier widths and AV . are the conduction-band
Ic

discontinuities. This additive potential form corresponds to a rectangular

quantum wire with cross section a x b when V1 and V0 are very large and a and

b are less than the deBroglie wavelength (A P) of the electron. The quantum

wire with circular cross section also has a quasi-one-dimensional character,

but the wavefunction in the confinement direction is the Bessel function.

We now solve the time-independend Schrbdomger equation with the

Hamiltonian

H- - M 2 + V(y,z) (3)
2m

c

where m is the effective electron mass at the bottom of the GaAs conductionc

band. In order to deal with a finite density of states, we must take our

structure within a large, impenetrable rigid box extended, say, from -L/2 to

L/2. With these boundary conditions, the Schr6dinger equation is separable

with the additive potential form, and then we can write the wavefunction in

the product form
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*(r) - L exp(ik xx) *(y)*(z) (4)

where k - 2xn x/L and n takes the integer values 0, 1, 2 ..... The y- andxx x

z-parts of the wavefunction, *(y) and *(z), satisfy the reduced equations

2m
*"(y) + 2 - [E Y-V(y)]b(z) - 0 (5)

2m
*"(z) + 2 C [Ez-V(z)l(z) - 0 , (6)

where

E + E -E k2k /2m (7)
y z C

Here, E is the total energy corresponding to the Hamiltonian H, and

E y(E z) is the energy eigenvalue of Eq. (5) ((6)). Because of the symmetry of

our system, it is convenient to write the wavefunction in terms of even and

odd functions as

SAI(ky)cos(k y) 0 < y < b

ek (y) -
(8)

y

A2 (ky)cos(kyy) + A3(ky)sin(kyy) b < y < L/2

and
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B1 (ky)sin(k7 ) 0 < y < b

Ao (y)- (9)

y

B2(ky )cos(k 7 ) + B3 (ky)sin(kpr) b < y < L/2

The z-components of the wavefunctions can be written in similar forms as

CI(kz )cos(k zZ) ,0 < z < a

ek (Z)- 
(10)

C2(kz)coS(k zz) + C3(kz)sin(kzz) , a < z < L/2

and

D1 (k z)sin(k zZ) ,0 < z < a

#k ((Z)
z

D2 (kz)cos(kzz) + D 3(kz)sin(kzZ) a < z < L/2

When we apply the boundary conditions to the y-components of the wavefunction,

we get the equations for the bound states of even and odd parity,

respectively, as

!, cos(k b)sin(k L/2-k b) + cos(k L/2) - 0 (12)
k y y y y

and
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k sin(k b)sin(k L/2-k b) + sin(k L/2) - 0 , (13)
k y y y

2
where 1 2mcVl/x . The coefficients A. and B. are

A 3  7v1  2_ cos (k b) (14)
A1 ky

A Y
I" I -- sin(2k b) (15)
A 2k y

B 71
B-1 + 2 sin(2k b) (16)1 y1

B '
.:Z in 2(k (17)

B I k sinkb

With the same calculation for Eq. (6), we find similar results for the

conditions of the bound states and coefficients C. and D., by replacing b with

2
a, ky with k and 71 with 70 , which is 2mcVo/)(. From the normalization

conditions, A1, Bi, C1 and D1 can be determined as shown for A1 and B1 in Ref.

(5]. The energy eigenvalues corresponding to Eqs. (5) and (6) are given by

2 2m 2za
(E r- k + k(18)

where a (- e or o) labels the state's parity.

Taking 7l and -° both to be equal to zero, which is identical to the

limit where the 8-functions are placed on the boundaries, that is, b - a -

L/2, one recovers A3/A1 - B2/BI - C3/C - D2/Dl - 0, A2/Al - B3/B1 - C2/C1 -
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D3/D I  and A B C D - ,2/L], which is the result for the motion

of a 3D particle in a rigid box.

III. Local density of states

The local density of states (DOS) in the DBRTS has been obtained in

various cases (6]. It can be defined in the two-direction case as

N(y,z;E) - -rImG(r,r;E)

L 14 ", (y),2 ,P', (z)1'2 6(E'E- )  (19)
L Lk
k a k k Y z

x yz

where the factor of 2 implies spin degeneracy, G(r,r';E) is the single-

particle Green's function, and a and P (- e or o) label a state's partiy.

When the system size goes to infinity, we can change the summation into the

appropriate integration because the density of allowed wavevectors becomes

2x/L:

N(y,z;E) - L 2  dkxS(E-E) dk y ky(Y) l2  dkl*akz(Z) l2 (20)
2r3  k F 0

with

1,I0,Y(y)I2 - -[AI + B2 + (AI-BI )cos(2k (21)

I#kz)l 2  1 1 1 D +.

it~ 2 [C2 + D12 + (CI-_D I2) cos(2kzZ) (22)
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Integrating Eq. (20) over k ,we get

L2 2m 2
N(Yz;E) - dk + + B)cos(2k) ]167r 3

[C2 + 2+ (C2_D2)cos(2k z)]
x dk 22] (23)

z [E - [ 2/2m ](k +k )]

The wavefunction coefficients Al, BI, CI and D are given by

2

lim (L/2) 2 P - F (p) (24a)
2b/L- 1p + U2Cos (p) - U1 p sin(2p)

22(p( 2 b
lim (L/2)B (p/b) - 2 2 o(p) (24b)

2b/L-0O p + U2sin (p) + U1 p sin(2p)

22(q(2 )
lim (L/2)C (q/a) - - G (q) (24c)

2b/L-O q + Ucos (q) U q sin(2q)
0 0

2 ~ ~ ~ ___q)_____(2_____d)__

lin (L/2)D (q/a) - 2 2 (q) (24d)
2a/LO q + (q) U q sin(2q)

0 0

where p - k yb, q - kz , 1 - 1b and U0 0 a. Furthermore, when we allow V

or V0 to go to zero, N(y,z';E) becomes N(z;E) or N(y;E), which is that of the

one-direction DBRTS.

Equation (23) shows the cross-sectional local DOS of the quantum-well

wire, the so-called two-direction DBRTS, which consists of two parts, each
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coming from even and odd parity, respectively. In both the y- and z-

directions, it shows sinusoidal behavior. In the limit of V -. 0 and V0 -. 0,

the functions F(p) and G(q) are unity and N(y,z;E) becomes the DOS of a free

electron in a box of volume 4abL.

IV. Crossovers of the density of states

We now consider the DOS in the well, N(E), which can be calculated by

taking the integral over the well volume.

N(E) - 8 J *f f dx dy dz N(y,z;E) (25)

The result is

N(E) - L3 c dp [F (p) + F (p) + (F (p)-F (p))sin(2p)/2p]
M3 2 2 e 0 e 0

2_-(p/b)2) Ge (q) + G0 (q) + (Ge (q)-G 0 (q)lsin(2q)/2q 1  (26)
x ~dq [ 222 ( 6

r0 (q 2 - (q/a)2 -(p/b)2);i

2 E/2
where - 2m E/).

Let us evaluate the DOS for a few extreme cases.

(i) 3D case

This corresponds to the limits U1 << 1 and Uo << 1, i.e., Fe (p) - F o(p)

- G (q) - G (q) - 1. Then we arrive at

N(E) - 82 I dp J dq 1/(q 2-(q/a) 2-(p/b) 2)

X 3 )(2
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2m

_ 4abL c E (27)
2w2 2

which is the well-known DOS of a 3D free-electron gas with volume 4abL.

(ii) 2D case

In this case, either U or U0 goes to zero while the other goes to

infinity, i.e., U0 - and U - 0 or vice versa, such that Eq. (26) becomes

4Lmc  b(t72-(q/a)2)2 2

N(E) - jL J dp 1/(n 2-(p/b) 2-(q/a)2

ir) 3 0 2j

x f dq (Ge(q) + Go(q) + (G(q) - Go(q)lsin(2q)/2q1 (28)

For U - , the DOS becomes0

4Lm b rao l

N(E) - dq $(q-(n+l/2)x + S(q-(n+l)*) + [S(q-(n+l/2)x)2w) 2

2Xn-0O

6(q-(n+l)x)J [sin(2q)/2q]]

* 2b J dq[S(q-(n+1/2)*) + S(q-(n+l)x)]

NWn-0

m 2bL e(E-nE) 
(29)

n-I



where 9 is the unit step function and E0 - -r 2)1 /(8m ca 2. Here, we have used

the fact that G a(q) can be represented in terms of 6-functions when U 0 goes to

infinity (see Fig. 1).

(iii) 1D case

This corresponds to U 0 and U1both going to infinity so as to confine

the motion of the electrons to just one direction:

N(E) - L2m 1 bil dp x [({p-(m+l/2)x) + 6{p-(m+l)ir)I
7r) 0 O

x Go (q 2 (p' 2)/2d ir[6(a-(n+l/2)r) + 6fc-(n+l)rl

n-0 ro[172 (q/a) 2 (p/b)2 4

L2m i 22 2 2 h
- ~II~) 2 'x2m )(((m+1/2)/b) + ((n+l/2)/a)

m,n

+ l/fE-(' 2 w /2m C)(((m+l/2)/b) 2+ ((n+l)/a 211

" 1/[E-()'( 2 /2m C)(((m+1)/b) 2+ ((n+1/2)/a) 2)14

" 1/[E-()( 2 2/2m )(((m+l)/b) 2 + ((n+1)/a))fl2fl] (30)

We have again used the fact that F a(p) behaves as 6-function when U1 goes to

In order to find the crossovers of the DOS in the well from 3D to 2D

graphically, we modify Eq. (26) as
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N(E)2b-2r/2 (E/E 0 dq [Ge (q) + G (q) + (G(q)-G(q))sin(2q)/2q]

2bLmc 0

(31)

where w/2(E/E ) - an and G (q) is given by Eqs. (24c) and (24d). Similarly,

the equation which shows that the crossovers of the DOS in the well from 2D to

1D is expressed as

22 i/2(E/E0)

12 m 1 N(E) [ 0) dq[G (q) + G (q) + (Ge(q)-G (q))sin(2q)/2q]
22 f e0e 0c m-O

1

[(ir/2a) 2E/E0 - ((m+1/2)x/b) 2  (q/a) 2]

+ 1 2 (32)
[(/2a) 2(E/E ) - ((m+l)x/b)

2  (q/a)2 ]

Figure 2 shows the graphical result of Eq. (31), namely, the crossovers

of the DOS in the well from 3D to 2D. In this case we take U1 - 0, U changes

from 0 to 20, and E/E varies from 0 to 8. On the other hand, Fig. 3 shows

the transition of the DOS in the well from 2D to 1D. For the sake of

convenience, we take a - b, U1 to go to infinity, and U to vary from 0 to 20.

Higher values of U correspond to increased sharp peaks of the DOS of the 1D,

quantum-wire case. In this case, our result recovers the well-known sawtooth

type DOS diverging at values of E/E° - 2, 5, 8, 10, ... , which is in good

agreement with Arakawa and Sakaki[7]. The values at 5 and 10 are roughly
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twice those at 2 and 8, respectively, which comes from the double degeneracy

of the eigenstates.

V. Concluding remarks

Considering a quantum wire with a rectangular cross-section of a x b and

very long length L, which may be called a two-direction DBRTS when the

3confining potential is not very high, within a very large box of volume L , we

have calculated the local DOS and DOS in the well. The latter shows

crossovers from a 3D square-root behavior to a 1D sawtooth-type behavior, via

a 2D staircase-like behavior, when the confining potential is very high (U. >>

1). The higher values of U1 in the case of the transition from 2D to 1D

correspond to increased sharp peaks and finally reach the ideal sawtooth-type

behavior with singularities at the values of E/E ° - 2, 5., 8, 10, ... If we

3consider a small quantum box of volume a x b x c in a large box of volume L

we see a transition of a finite DOS from 1D to OD which is expressed as a sum

of delta functions [7].

Although our calculations have been performed so far for rather

artificial delta-profiled systems only, we are quite positive that this kind

of DOS transition will also occur in real systems where, for example, the

barriers have finite widths. For barriers with finite thickness, the

effective mass of the electron changes in passing from the quantum well region

(GaAs) to the barrier regions (AlGaAs) of the structure. For this, BenDaniel

and Duke (81 suggest that current conservation is guaranteed on both sides by

use of the boundary condition

I at -i at (33)
m 1z m 2 Bz
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where m1 and m2 are the effective masses of GaAs and AlGaAs, respectively.

Also, Bruno and Bahder [6] have considered this for the one-direction DBRTS

case and showed that the DOS at the low-energy subband edges is higher than

the DOS would be at the same energies in the absence of barriers (for delta-

profiled barriers). So for our two-direction DBRTS case, we can estimate that

our result for the DOS will also be increased a bit upward at the same

energies because of the additive form of the potential which we have taken.

Additive forms of potentials are used to describe the motion of an electron in

parabolic quantum wires [9] or quantum boxes [10]. Even if we take a quantum

wire with circular cross section, the wavefunctions are expressed in a

different way with Bessel functions, but the main feature of our calculation

will not change much.
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Figure Captions

1. Behaviors of G (q) and Go(q) for U - I and U - 10.

2. Crossover of the Slabol DOS Afrom 3D to 2D in the range from U - 0 to U0 -

20, i.e., 2bLm N(E) as a function of -. Here U takes the values 0, 2,
c 0

12, 16, 20.

3. Crossover of the g.obaal DOS from 2D to ID. Here we take U - and U -

0, 2, 8, 16, 20. Higher values of U 0 correspond to a sawtooth-like ID

behavior.
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